Spade
Mini Shell
3
\�P�@sDdZddddddddd d
ddgZd
dlZd
dlZd
dlZd
dlZd
dlmZd
dlmZd
dl m
Z
mZd
dlm
Z
mZGdd�de�Zd5dd�Zdd�Zdd�Zdd�Zdd�Zdd�Zd
d!�Zd"d#�Zd6d%d&�Zd'd
�Zd(d�Zd)d�Zd*d�Zd+d�Zd7d-d �Zd.d�Z
d8d/d0�Z!d9d1d�Z"d:d2d�Z#d;d3d�Z$d<d4d�Z%dS)=aq
Basic statistics module.
This module provides functions for calculating statistics of data,
including
averages, variance, and standard deviation.
Calculating averages
--------------------
================== =============================================
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
================== =============================================
Calculate the arithmetic mean ("the average") of data:
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625
Calculate the standard median of discrete data:
>>> median([2, 3, 4, 5])
3.5
Calculate the median, or 50th percentile, of data grouped into class
intervals
centred on the data values provided. E.g. if your data points are rounded
to
the nearest whole number:
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...
This should be interpreted in this way: you have two data points in the
class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one
in
the class interval 3.5-4.5. The median of these data points is 2.8333...
Calculating variability or spread
---------------------------------
================== =============================================
Function Description
================== =============================================
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== =============================================
Calculate the standard deviation of sample data:
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...
If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid
recalculating it:
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5
Exceptions
----------
A single exception is defined: StatisticsError is a subclass of ValueError.
�StatisticsError�pstdev� pvariance�stdev�variance�median�
median_low�median_high�median_grouped�mean�mode�
harmonic_mean�N)�Fraction)�Decimal)�groupby�chain)�bisect_left�bisect_rightc@seZdZdS)rN)�__name__�
__module__�__qualname__�rr�"/usr/lib64/python3.6/statistics.pyrcscCs�d}t|�\}}||i}|j}ttt|��}xRt|t�D]D\}} t||�}x0tt| �D]"\}}|d7}||d�|||<qVWq8Wd|kr�|d}
ntdd�t|j ��D��}
||
|fS)aC_sum(data [, start]) -> (type, sum, count)
Return a high-precision sum of the given numeric data as a fraction,
together with the type to be converted to and the count of items.
If optional argument ``start`` is given, it is added to the total.
If ``data`` is empty, ``start`` (defaulting to 0) is returned.
Examples
--------
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
(<class 'float'>, Fraction(11, 1), 5)
Some sources of round-off error will be avoided:
# Built-in sum returns zero.
>>> _sum([1e50, 1, -1e50] * 1000)
(<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
>>> from fractions import Fraction as F
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
>>> from decimal import Decimal as D
>>> data = [D("0.1375"), D("0.2108"),
D("0.3061"), D("0.0419")]
>>> _sum(data)
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Mixed types are currently treated as an error, except that int is
allowed.
r
�Ncss|]\}}t||�VqdS)N)r)�.0�d�nrrr� <genexpr>�sz_sum.<locals>.<genexpr>)
�_exact_ratio�get�_coerce�int�typer�map�sum�sorted�items)�data�start�countrrZpartialsZpartials_get�T�typ�values�totalrrr�_sumis$
r.cCs(y|j�Stk
r"tj|�SXdS)N)Z is_finite�AttributeError�mathZisfinite)�xrrr� _isfinite�sr2cCs�||kr|S|tks|tkr
|S|tkr,|St||�r:|St||�rH|St|t�rV|St|t�rd|St|t�r|t|t�r||St|t�r�t|t�r�|Sd}t||j|jf��dS)z�Coerce
types T and S to a common type, or raise TypeError.
Coercion rules are currently an implementation detail. See the
CoerceTest
test class in test_statistics for details.
z"don't know how to coerce %s and %sN)r!�bool�
issubclassr�float� TypeErrorr)r*�S�msgrrrr �s(
r
cCs�ydt|�tkst|�tkr"|j�Sy|j|jfStk
r`y|j�Stk
rZYnXYnXWnttfk
r�|dfSXd}t |j
t|�j���dS)z�Return Real number x to exact (numerator,
denominator) pair.
>>> _exact_ratio(0.25)
(1, 4)
x is expected to be an int, Fraction, Decimal or float.
Nz0can't convert type '{}' to
numerator/denominator)r"r5r�as_integer_ratio� numerator�denominatorr/�
OverflowError�
ValueErrorr6�formatr)r1r8rrrr�s
rcCsjt|�|kr|St|t�r(|jdkr(t}y||�Stk
rdt|t�r^||j�||j�S�YnXdS)z&Convert value to
given numeric type
T.rN)r"r4r!r;r5r6rr:)�valuer*rrr�_convert�s
r@cCs`tjt|��j�}|s|S|dd}x4tdt|��D]"}||d|kr6|d|�}Pq6W|S)Nr
r)�collections�Counter�iter�most_common�range�len)r'�tableZmaxfreq�irrr�_counts�srIcCs.t||�}|t|�kr&|||kr&|St�dS)z,Locate
the leftmost value exactly equal to xN)rrFr=)�ar1rHrrr�
_find_lteq s
rKcCs>t|||d�}|t|�dkr6||d|kr6|dSt�dS)z-Locate
the rightmost value exactly equal to
x)�lorN)rrFr=)rJ�lr1rHrrr�
_find_rteqs rN�negative
valueccs(x"|D]}|dkrt|��|VqWdS)z7Iterate over
values, failing if any are less than
zero.r
N)r)r,�errmsgr1rrr� _fail_negs
rQcCsHt|�|krt|�}t|�}|dkr,td��t|�\}}}t|||�S)a�Return
the sample arithmetic mean of data.
>>> mean([1, 2, 3, 4, 4])
2.8
>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)
>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"),
D("0.625"), D("0.375")])
Decimal('0.5625')
If ``data`` is empty, StatisticsError will be raised.
rz%mean requires at least one data
point)rC�listrFrr.r@)r'rr*r-r)rrrr
#scCs�t|�|krt|�}d}t|�}|dkr2td��n<|dkrn|d}t|tjtf�rf|dkrbt|��|Std��y"t dd�t
||�D��\}}}Wntk
r�dSXt|||�S)aReturn the harmonic mean of data.
The harmonic mean, sometimes called the subcontrary mean, is the
reciprocal of the arithmetic mean of the reciprocals of the data,
and is often appropriate when averaging quantities which are rates
or ratios, for example speeds. Example:
Suppose an investor purchases an equal value of shares in each of
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
What is the average P/E ratio for the investor's portfolio?
>>> harmonic_mean([2.5, 3, 10]) # For an equal investment
portfolio.
3.6
Using the arithmetic mean would give an average of about 5.167, which
is too high.
If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.
z.harmonic mean does not support negative valuesrz.harmonic_mean
requires at least one data pointr
zunsupported
typecss|]}d|VqdS)rNr)rr1rrrrdsz
harmonic_mean.<locals>.<genexpr>)
rCrRrFr�
isinstance�numbersZRealrr6r.rQ�ZeroDivisionErrorr@)r'rPrr1r*r-r)rrrr=s$
"cCs\t|�}t|�}|dkr
td��|ddkr8||dS|d}||d||dSdS)aBReturn the
median (middle value) of numeric data.
When the number of data points is odd, return the middle data point.
When the number of data points is even, the median is interpolated by
taking the average of the two middle values:
>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0
r
zno median for empty
data�rN)r%rFr)r'rrHrrrrls
cCsLt|�}t|�}|dkr
td��|ddkr8||dS||ddSdS)a Return the low median of
numeric data.
When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.
>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3
r
zno median for empty
datarVrN)r%rFr)r'rrrrr�scCs,t|�}t|�}|dkr
td��||dS)aReturn the high median of data.
When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.
>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5
r
zno median for empty datarV)r%rFr)r'rrrrr�s
rc
Cs�t|�}t|�}|dkr"td��n|dkr2|dS||d}x*||fD]}t|ttf�rHtd|��qHWy||d}Wn(tk
r�t|�t|�d}YnXt||�}t |||�}|}||d} |||d|| S)a�Return
the 50th percentile (median) of grouped continuous data.
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7
>>> median_grouped([52, 52, 53, 54])
52.5
This calculates the median as the 50th percentile, and should be
used when your data is continuous and grouped. In the above example,
the values 1, 2, 3, etc. actually represent the midpoint of classes
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
class 3.5-4.5, and interpolation is used to estimate it.
Optional argument ``interval`` represents the class interval, and
defaults to 1. Changing the class interval naturally will change the
interpolated 50th percentile value:
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5
This function does not check whether the data points are at least
``interval`` apart.
r
zno median for empty datarrVzexpected number but got %r)
r%rFrrS�str�bytesr6r5rKrN)
r'Zintervalrr1�obj�L�l1�l2Zcf�frrrr �s&
cCsBt|�}t|�dkr
|ddS|r6tdt|���ntd��dS)a�Return the most
common data point from discrete or nominal data.
``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3
This also works with nominal (non-numeric) data:
>>> mode(["red", "blue", "blue",
"red", "green", "red", "red"])
'red'
If there is not exactly one most common value, ``mode`` will raise
StatisticsError.
rr
z.no unique mode; found %d equally common valueszno mode for empty
dataN)rIrFr)r'rGrrrr�scsd�dkrt|��t�fdd�|D��\}}}t�fdd�|D��\}}}||dt|�8}||fS)a;Return
sum of square deviations of sequence data.
If ``c`` is None, the mean is calculated in one pass, and the
deviations
from the mean are calculated in a second pass. Otherwise, deviations
are
calculated from ``c`` as given. Use the second case with care, as it
can
lead to garbage results.
Nc3s|]}|�dVqdS)rVNr)rr1)�crrrsz_ss.<locals>.<genexpr>c3s|]}|�VqdS)Nr)rr1)r^rrrsrV)r
r.rF)r'r^r*r-r)�UZtotal2Zcount2r)r^r�_sssr`cCsLt|�|krt|�}t|�}|dkr,td��t||�\}}t||d|�S)a�Return
the sample variance of data.
data should be an iterable of Real-valued numbers, with at least two
values. The optional argument xbar, if given, should be the mean of
the data. If it is missing or None, the mean is automatically
calculated.
Use this function when your data is a sample from a population. To
calculate the variance from the entire population, see ``pvariance``.
Examples:
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095
If you have already calculated the mean of your data, you can pass it
as
the optional second argument ``xbar`` to avoid recalculating it:
>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095
This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"),
D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')
>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)
rVz*variance requires at least two data
pointsr)rCrRrFrr`r@)r'�xbarrr*�ssrrrr"s&cCsHt|�|krt|�}t|�}|dkr,td��t||�\}}t|||�S)a�Return
the population variance of ``data``.
data should be an iterable of Real-valued numbers, with at least one
value. The optional argument mu, if given, should be the mean of
the data. If it is missing or None, the mean is automatically
calculated.
Use this function to calculate the variance from the entire population.
To estimate the variance from a sample, the ``variance`` function is
usually a better choice.
Examples:
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25
If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:
>>> mu = mean(data)
>>> pvariance(data, mu)
1.25
This function does not check that ``mu`` is actually the mean of
``data``.
Giving arbitrary values for ``mu`` may lead to invalid or impossible
results.
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"),
D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')
>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)
rz*pvariance requires at least one data
point)rCrRrFrr`r@)r'�murr*rbrrrrQs'cCs2t||�}y|j�Stk
r,tj|�SXdS)z�Return the square root of the sample variance.
See ``variance`` for arguments and other details.
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827
N)r�sqrtr/r0)r'ra�varrrrr�s
cCs2t||�}y|j�Stk
r,tj|�SXdS)z�Return the square root of the population
variance.
See ``pvariance`` for arguments and other details.
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251
N)rrdr/r0)r'rcrerrrr�s
)r
)rO)r)N)N)N)N)N)&�__doc__�__all__rAZdecimalr0rTZ fractionsrr� itertoolsrrZbisectrrr=rr.r2r
rr@rIrKrNrQr
rrrrr rr`rrrrrrrr�<module>MsD
:
/
7*
/
0