Spade
Mini Shell
3
\(�@s�dZddlmZmZdddddgZGdd�ded �ZGd
d�de�Zeje�Gdd�de�Z e je
�Gdd�de �ZGd
d�de�Zeje
�dS)z~Abstract Base
Classes (ABCs) for numbers, according to PEP 3141.
TODO: Fill out more detailed documentation on the
operators.�)�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc@seZdZdZfZdZdS)rz�All
numbers inherit from this class.
If you just want to check if an argument x is a number, without
caring what kind, use isinstance(x, Number).
N)�__name__�
__module__�__qualname__�__doc__� __slots__�__hash__�rr�/usr/lib64/python3.6/numbers.pyrs)� metaclassc@s�eZdZdZfZedd��Zdd�Zeedd���Z eedd ���Z
ed
d��Zedd
��Zedd��Z
edd��Zdd�Zdd�Zedd��Zedd��Zedd��Zedd��Zedd��Zed
d!��Zed"d#��Zed$d%��Zed&d'��Zd(S))raaComplex
defines the operations that work on the builtin complex type.
In short, those are: a conversion to complex, .real, .imag, +, -,
*, /, abs(), .conjugate, ==, and !=.
If it is given heterogenous arguments, and doesn't have special
knowledge about them, it should fall back to the builtin complex
type as described below.
cCsdS)z<Return a builtin complex instance. Called for
complex(self).Nr)�selfrrr�__complex__-szComplex.__complex__cCs|dkS)z)True
if self != 0. Called for
bool(self).rr)rrrr�__bool__1szComplex.__bool__cCst�dS)zXRetrieve
the real component of this number.
This should subclass Real.
N)�NotImplementedError)rrrr�real5szComplex.realcCst�dS)z]Retrieve
the imaginary component of this number.
This should subclass Real.
N)r)rrrr�imag>szComplex.imagcCst�dS)zself
+
otherN)r)r�otherrrr�__add__GszComplex.__add__cCst�dS)zother
+
selfN)r)rrrrr�__radd__LszComplex.__radd__cCst�dS)z-selfN)r)rrrr�__neg__QszComplex.__neg__cCst�dS)z+selfN)r)rrrr�__pos__VszComplex.__pos__cCs
||S)zself - otherr)rrrrr�__sub__[szComplex.__sub__cCs
||S)zother -
selfr)rrrrr�__rsub___szComplex.__rsub__cCst�dS)zself
*
otherN)r)rrrrr�__mul__cszComplex.__mul__cCst�dS)zother
*
selfN)r)rrrrr�__rmul__hszComplex.__rmul__cCst�dS)z5self
/ other: Should promote to float when
necessary.N)r)rrrrr�__truediv__mszComplex.__truediv__cCst�dS)zother
/
selfN)r)rrrrr�__rtruediv__rszComplex.__rtruediv__cCst�dS)zBself**exponent;
should promote to float or complex when
necessary.N)r)r�exponentrrr�__pow__wszComplex.__pow__cCst�dS)zbase
**
selfN)r)r�baserrr�__rpow__|szComplex.__rpow__cCst�dS)z7Returns
the Real distance from 0. Called for
abs(self).N)r)rrrr�__abs__�szComplex.__abs__cCst�dS)z$(x+y*i).conjugate()
returns
(x-y*i).N)r)rrrr� conjugate�szComplex.conjugatecCst�dS)z
self
== otherN)r)rrrrr�__eq__�szComplex.__eq__N)r r
rrr
rrr�propertyrrrrrrrrrr
r!r"r$r&r'r(r)rrrrr
s. c@s�eZdZdZfZedd��Zedd��Zedd��Zedd ��Z ed%dd��Z
d
d�Zdd�Zedd��Z
edd��Zedd��Zedd��Zedd��Zedd��Zdd�Zedd
��Zed!d"��Zd#d$�Zd
S)&rz�To Complex, Real adds the operations that work on real
numbers.
In short, those are: a conversion to float, trunc(), divmod,
%, <, <=, >, and >=.
Real also provides defaults for the derived operations.
cCst�dS)zTAny Real can be converted to a native float object.
Called for
float(self).N)r)rrrr� __float__�szReal.__float__cCst�dS)aGtrunc(self):
Truncates self to an Integral.
Returns an Integral i such that:
* i>0 iff self>0;
* abs(i) <= abs(self);
* for any Integral j satisfying the first two conditions,
abs(i) >= abs(j) [i.e. i has "maximal" abs among
those].
i.e. "truncate towards 0".
N)r)rrrr� __trunc__�szReal.__trunc__cCst�dS)z$Finds
the greatest Integral <=
self.N)r)rrrr� __floor__�szReal.__floor__cCst�dS)z!Finds
the least Integral >=
self.N)r)rrrr�__ceil__�sz
Real.__ceil__NcCst�dS)z�Rounds
self to ndigits decimal places, defaulting to 0.
If ndigits is omitted or None, returns an Integral, otherwise
returns a Real. Rounds half toward even.
N)r)rZndigitsrrr� __round__�szReal.__round__cCs||||fS)z�divmod(self,
other): The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
r)rrrrr�
__divmod__�szReal.__divmod__cCs||||fS)z�divmod(other,
self): The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
r)rrrrr�__rdivmod__�szReal.__rdivmod__cCst�dS)z)self
// other: The floor() of
self/other.N)r)rrrrr�__floordiv__�szReal.__floordiv__cCst�dS)z)other
// self: The floor() of
other/self.N)r)rrrrr�
__rfloordiv__�szReal.__rfloordiv__cCst�dS)zself
%
otherN)r)rrrrr�__mod__�szReal.__mod__cCst�dS)zother
%
selfN)r)rrrrr�__rmod__�sz
Real.__rmod__cCst�dS)zRself
< other
< on Reals defines a total ordering, except perhaps for
NaN.N)r)rrrrr�__lt__�szReal.__lt__cCst�dS)z
self
<=
otherN)r)rrrrr�__le__�szReal.__le__cCstt|��S)z(complex(self)
== complex(float(self),
0))�complex�float)rrrrr�szReal.__complex__cCs|
S)z&Real numbers are their real
component.r)rrrrr�sz Real.realcCsdS)z)Real numbers have no
imaginary component.rr)rrrrr�sz Real.imagcCs|
S)zConjugate is a no-op for
Reals.r)rrrrr(szReal.conjugate)N)r r
rrr
rr+r,r-r.r/r0r1r2r3r4r5r6r7rr*rrr(rrrrr�s(
c@s<eZdZdZfZeedd���Zeedd���Zdd�Z dS) rz6.numerator
and .denominator should be in lowest
terms.cCst�dS)N)r)rrrr� numeratorszRational.numeratorcCst�dS)N)r)rrrr�denominatorszRational.denominatorcCs|j|jS)afloat(self)
= self.numerator / self.denominator
It's important that this conversion use the integer's
"true"
division rather than casting one side to float before dividing
so that ratios of huge integers convert without overflowing.
)r:r;)rrrrr+szRational.__float__N)
r r
rrr
r*rr:r;r+rrrrrsc@s�eZdZdZfZedd��Zdd�Zed%dd��Zed d
��Z edd��Z
ed
d��Zedd��Zedd��Z
edd��Zedd��Zedd��Zedd��Zedd��Zedd��Zdd
�Zed!d"��Zed#d$��ZdS)&rz@Integral adds a
conversion to int and the bit-string
operations.cCst�dS)z int(self)N)r)rrrr�__int__+szIntegral.__int__cCst|�S)z6Called
whenever an index is needed, such as in
slicing)�int)rrrr� __index__0szIntegral.__index__NcCst�dS)a4self
** exponent % modulus, but maybe faster.
Accept the modulus argument if you want to support the
3-argument version of pow(). Raise a TypeError if exponent < 0
or any argument isn't Integral. Otherwise, just implement the
2-argument version described in Complex.
N)r)rr#�modulusrrrr$4s zIntegral.__pow__cCst�dS)z
self
<< otherN)r)rrrrr�
__lshift__?szIntegral.__lshift__cCst�dS)z
other <<
selfN)r)rrrrr�__rlshift__DszIntegral.__rlshift__cCst�dS)z
self
>> otherN)r)rrrrr�
__rshift__IszIntegral.__rshift__cCst�dS)z
other >>
selfN)r)rrrrr�__rrshift__NszIntegral.__rrshift__cCst�dS)zself
&
otherN)r)rrrrr�__and__SszIntegral.__and__cCst�dS)zother
&
selfN)r)rrrrr�__rand__XszIntegral.__rand__cCst�dS)zself
^
otherN)r)rrrrr�__xor__]szIntegral.__xor__cCst�dS)zother
^
selfN)r)rrrrr�__rxor__bszIntegral.__rxor__cCst�dS)zself
|
otherN)r)rrrrr�__or__gszIntegral.__or__cCst�dS)zother
|
selfN)r)rrrrr�__ror__lszIntegral.__ror__cCst�dS)z~selfN)r)rrrr�
__invert__qszIntegral.__invert__cCstt|��S)zfloat(self) ==
float(int(self)))r9r=)rrrrr+wszIntegral.__float__cCs|
S)z"Integers are their own
numerators.r)rrrrr:{szIntegral.numeratorcCsdS)z!Integers
have a denominator of
1.�r)rrrrr;�szIntegral.denominator)N)r r
rrr
rr<r>r$r@rArBrCrDrErFrGrHrIrJr+r*r:r;rrrrr&s(
N)r�abcrr�__all__rr�registerr8rr9rrr=rrrr�<module>sp
u
_