Spade

Mini Shell

Directory:~$ /proc/self/root/lib64/python2.7/
Upload File

[Home] [System Details] [Kill Me]
Current File:~$ //proc/self/root/lib64/python2.7/numbers.pyo

�
q�fc@
s�dZddlmZddlmZmZmZdddddgZdefd	��YZ	de	fd
��YZ
e
je�de
fd��YZ
e
je�de
fd��YZdefd
��YZeje�eje�dS(s~Abstract
Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the
operators.i����(tdivision(tABCMetatabstractmethodtabstractpropertytNumbertComplextRealtRationaltIntegralcB
s eZdZeZdZdZRS(s�All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    (N(t__name__t
__module__t__doc__Rt
__metaclass__t	__slots__tNonet__hash__(((s/usr/lib64/python2.7/numbers.pyR
scB
sFeZdZdZed��Zd�Zed��Zed��Z	ed��Z
ed��Zed��Zed��Z
d	�Zd
�Zed��Zed��Zed
��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zd�ZRS(saComplex
defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    cC sdS(s<Return a builtin complex instance. Called for
complex(self).N((tself((s/usr/lib64/python2.7/numbers.pyt__complex__/scC
s
|dkS(s)True if self != 0. Called for
bool(self).i((R((s/usr/lib64/python2.7/numbers.pyt__nonzero__4scC
s
t�dS(sXRetrieve the real component of this number.

        This should subclass Real.
       
N(tNotImplementedError(R((s/usr/lib64/python2.7/numbers.pytreal8scC
s
t�dS(s]Retrieve the imaginary component of this number.

        This should subclass Real.
        N(R(R((s/usr/lib64/python2.7/numbers.pytimag@scC s
t�dS(sself +
otherN(R(Rtother((s/usr/lib64/python2.7/numbers.pyt__add__HscC
s
t�dS(sother +
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__radd__MscC s
t�dS(s-selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__neg__RscC
s
t�dS(s+selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__pos__WscC
s	||S(sself -
other((RR((s/usr/lib64/python2.7/numbers.pyt__sub__\scC
s	||S(sother -
self((RR((s/usr/lib64/python2.7/numbers.pyt__rsub__`scC s
t�dS(sself *
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mul__dscC s
t�dS(sother *
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmul__iscC s
t�dS(sPself / other without __future__ division

        May promote to float.
        N(R(RR((s/usr/lib64/python2.7/numbers.pyt__div__nscC s
t�dS(s(other / self without __future__
divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rdiv__vscC s
t�dS(s`self / other with __future__ division.

        Should promote to float when necessary.
       
N(R(RR((s/usr/lib64/python2.7/numbers.pyt__truediv__{scC s
t�dS(s%other / self with __future__
divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rtruediv__�scC
s
t�dS(sBself**exponent; should promote to float or complex when
necessary.N(R(Rtexponent((s/usr/lib64/python2.7/numbers.pyt__pow__�scC
s
t�dS(sbase **
selfN(R(Rtbase((s/usr/lib64/python2.7/numbers.pyt__rpow__�scC
s
t�dS(s7Returns the Real distance from 0. Called for
abs(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt__abs__�scC
s
t�dS(s$(x+y*i).conjugate() returns
(x-y*i).N(R(R((s/usr/lib64/python2.7/numbers.pyt	conjugate�scC
s
t�dS(s
self ==
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__eq__�scC
s||kS(s
self !=
other((RR((s/usr/lib64/python2.7/numbers.pyt__ne__�s((R	R
RR
RRRRRRRRRRRRRRRR
R!R"R$R&R'R(R)R*(((s/usr/lib64/python2.7/numbers.pyR"s0				cB
s�eZdZdZed��Zed��Zd�Zd�Zed��Z	ed��Z
ed��Zed��Zed	��Z
ed
��Zd�Zed��Zed
��Zd�ZRS(s�To Complex, Real
adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    cC s
t�dS(sTAny Real can be converted to a native float object.

        Called for
float(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt	__float__�scC
s
t�dS(sGtrunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among
those].
        i.e. "truncate towards 0".
        N(R(R((s/usr/lib64/python2.7/numbers.pyt	__trunc__�scC
s||||fS(s�divmod(self, other): The pair (self // other, self %
other).

        Sometimes this can be computed faster than the pair of
        operations.
        ((RR((s/usr/lib64/python2.7/numbers.pyt
__divmod__�scC s||||fS(s�divmod(other, self): The pair
(self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        ((RR((s/usr/lib64/python2.7/numbers.pyt__rdivmod__�scC
s
t�dS(s)self // other: The floor() of
self/other.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__floordiv__�scC
s
t�dS(s)other // self: The floor() of
other/self.N(R(RR((s/usr/lib64/python2.7/numbers.pyt
__rfloordiv__�scC
s
t�dS(sself %
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mod__�scC s
t�dS(sother %
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmod__�scC s
t�dS(sRself < other

        < on Reals defines a total ordering, except perhaps for
NaN.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__lt__�scC s
t�dS(s
self <=
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__le__�scC
stt|��S(s(complex(self) == complex(float(self),
0)(tcomplextfloat(R((s/usr/lib64/python2.7/numbers.pyR�scC
s|
S(s&Real numbers are their real
component.((R((s/usr/lib64/python2.7/numbers.pyR�scC
sdS(s)Real numbers have no imaginary
component.i((R((s/usr/lib64/python2.7/numbers.pyRscC s|
S(sConjugate is a no-op for
Reals.((R((s/usr/lib64/python2.7/numbers.pyR(s((R	R
RR
RR+R,R-R.R/R0R1R2R3R4RtpropertyRRR((((s/usr/lib64/python2.7/numbers.pyR�s

			cB
s;eZdZdZed��Zed��Zd�ZRS(s6.numerator and
.denominator should be in lowest terms.cC s
t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pyt	numeratorscC
s
t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pytdenominatorscC
s|j|jS(sfloat(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's
"true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        (R8R9(R((s/usr/lib64/python2.7/numbers.pyR+s((R	R
RR
RR8R9R+(((s/usr/lib64/python2.7/numbers.pyRs
cB s
eZdZdZed��Zd�Zedd��Zed��Z	ed��Z
ed��Zed��Zed��Z
ed	��Zed
��Zed��Zed��Zed
��Zed��Zd�Zed��Zed��ZRS(sAIntegral
adds a conversion to long and the bit-string operations.cC s
t�dS(s
long(self)N(R(R((s/usr/lib64/python2.7/numbers.pyt__long__,scC
s
t|�S(s6Called whenever an index is needed, such as in
slicing(tlong(R((s/usr/lib64/python2.7/numbers.pyt	__index__1scC
s
t�dS(s4self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        N(R(RR#tmodulus((s/usr/lib64/python2.7/numbers.pyR$5s	cC
s
t�dS(s
self <<
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt
__lshift__@scC s
t�dS(s
other <<
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rlshift__EscC s
t�dS(s
self >>
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt
__rshift__JscC s
t�dS(s
other >>
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rrshift__OscC s
t�dS(sself &
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__and__TscC s
t�dS(sother &
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rand__YscC s
t�dS(sself ^
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__xor__^scC s
t�dS(sother ^
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rxor__cscC s
t�dS(sself |
otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__or__hscC s
t�dS(sother |
selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__ror__mscC s
t�dS(s~selfN(R(R((s/usr/lib64/python2.7/numbers.pyt
__invert__rscC stt|��S(s float(self) ==
float(long(self))(R6R;(R((s/usr/lib64/python2.7/numbers.pyR+xscC
s|
S(s"Integers are their own
numerators.((R((s/usr/lib64/python2.7/numbers.pyR8|scC
sdS(s!Integers have a denominator of
1.i((R((s/usr/lib64/python2.7/numbers.pyR9�s(N(R	R
RR
RR:R<RR$R>R?R@RARBRCRDRERFRGRHR+R7R8R9(((s/usr/lib64/python2.7/numbers.pyR's(	
	N(Rt
__future__RtabcRRRt__all__tobjectRRtregisterR5RR6RRtintR;(((s/usr/lib64/python2.7/numbers.pyt<module>s�
b
_